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Motion of three point vortices
in a periodic parallelogram
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The motion of three interacting point vortices with zero net circulation in a periodic
parallelogram defines an integrable dynamical system. A method for solving this
system is presented. The relative motion of two of the vortices can be ‘mapped’ onto
a problem of advection of a passive particle in ‘phase space’ by a certain set of
stationary point vortices, which also has zero net circulation. The advection problem
in phase space can be written in Hamiltonian form, and particle trajectories are given
by level curves of the Hamiltonian. The motion of individual vortices in the original
three-vortex problem then requires one additional quadrature. A complicated structure
of the solution space emerges with a large number of qualitatively different regimes
of motion. Bifurcations of the streamline pattern in phase space, which occur as the
impulse of the original vortex system is changed, are traced. Representative cases are
analysed in detail, and a general procedure is indicated for all cases. Although the
problem is integrable, the trajectories of the vortices can be surprisingly complicated.
The results are compared qualitatively to vortex paths found in large-scale numerical
simulations of two-dimensional turbulence.

1. Introduction
In most numerical simulations of homogeneous, isotropic, two-dimensional tur-

bulence the flow field is represented in a domain, usually taken as a square, that is
periodically continued in both directions to provide a complete tiling of the plane. It is
argued that the use of periodic boundary conditions in this way provides the best rep-
resentation of a sample of the turbulence free from the effects of confining boundaries.
As the turbulence evolves, one observes that strong, spatially localized vortices emerge,
and at intermediate to late stages of such simulations a basic feature of the dynamics
is the interaction of these strong vortices. At very late stages the presence of periodic
boundaries becomes noticeable, and the flow relaxes to one with a small number of
large vortices – typically two, one of each sign – which then decay by viscous effects.

During the period where one has several strong, well-defined, isolated vortices it is
natural to track their trajectories. This has been done by several investigators (see for
example McWilliams 1990). One is led to consider a model in which an assembly of
N point vortices evolves within a finite, periodic domain. It is convenient to think of
the flow plane as the complex z-plane, where z = x + iy represents a concatenation
of the x- and y-coordinates. The periodic domain will have a shape characterized by
two complex numbers, represented here as 2ω1 and 2ω2, which are the periods of the
domain. The only constraint on these periods is that their ratio not be real, although
typically ω1 and ω2 are chosen such that Im ω2/ω1 > 0. Any two such numbers
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define a tessellation of the plane into a lattice of identical ‘period-parallelograms’;
that period-parallelogram with vertices 0, 2ω1, 2ω1 + 2ω2, 2ω2 is the ‘fundamental
period-parallelogram’, which we will refer to simply as the fundamental parallelogram.
A system of point vortices is placed in the fundamental parallelogram and periodically
continued to all other parallelograms. Each ‘base’ vortex, thus, represents an infinite
lattice (with generators 2ω1 and 2ω2) of identical vortices. With the base vortices at
zα = xα + iyα, α = 1, . . . , N, vortex α has periodic images at zα + 2mω1 + 2nω2, where
(m, n) is any pair of integers different from (0, 0). Vortex α and its periodic images all
have strength Γα.

Such vortex lattice problems date back to Tkachenko (1966), who derives equations
of motion for a vortex lattice in terms of the Weierstrass ζ-function and applies
these equations to the problem of a lattice of identical vortices that rotates rigidly.
This work has been extended by O’Neil (1989) to the problem of N point vortices
of various strengths arranged on N lattices that are allowed to rotate or translate
as a whole. Benzi & Legras (1987) consider the related problem of N point vortices
in a square domain with doubly periodic boundary conditions, deriving equations of
motion in terms of infinite double sums over exponential and trigonometric functions.
Campbell, Doria & Kadtke (1989), considering the same problem, derive equations
of motion in terms of one infinite sum and one infinite product, both involving
exponential and trigonometric functions. Most recently, Weiss & McWilliams (1991)
derive equations of motion in a square domain in terms of an infinite sum over
trigonometric and hyperbolic functions.

Similarly to the work of Benzi & Legras (1987), Campbell et al. (1989) and Weiss &
McWilliams (1991), we impose periodicity of the flow field at the boundaries of the
period-parallelograms. The periodicity of the flow field requires that the circulation
integral around the boundary of any parallelogram must vanish. Thus, the circulations
of the base vortices must sum to zero, which cannot, of course, be satisfied for N = 1.
As we shall see below, this constraint implies that the system is integrable for N = 2
and 3. The solution for N = 2 is a uniform translation of all vortices with no relative
motion. In this paper we show how to carry out the solution for N = 3, which
is considerably richer than its counterpart on the infinite plane (Aref 1989; Rott
1989), and we display properties of the motion. Our methodology is an extension
of a procedure recently used to solve the problem of three vortices with zero total
circulation in a periodic strip (Aref & Stremler 1996; henceforth abbreviated AS).
Note that in the strip case it is necessary to enforce the condition that the sum of the
strengths is zero – this condition is equivalent to imposing periodicity of the flow for
the periodic-parallelogram case. The results of AS can be obtained from the results
presented here by setting Im ω1 = 0 and taking the limit Im ω2 →∞.

The three-vortex problem is of fundamental significance since it is the smallest
one for which the separations between vortices change in time. These separations
represent the ‘scales of motion’ in this problem, and a key dynamical feature of
two-dimensional turbulence is the transfer of energy (and other quantities) between
different scales. Elucidating a basic mechanism responsible for such transfer by solving
the problem of three interacting vortices in a periodic domain may thus lead to a
better understanding of two-dimensional turbulence dynamics, although the detailed
execution of such a program is still at a very preliminary stage.

Our main objective in this paper is to solve the equations of vortex motion for
the case N = 3 (and Γ1 + Γ2 + Γ3 = 0) in a doubly periodic domain. As already
mentioned, the equations of motion for the vortices in such a domain can be stated
in various forms. In § 2 we outline a derivation of the equations in terms of the
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Weierstrass ζ-function. As in the periodic strip problem (cf. AS), the dynamics of the
quantity z1 − z2 can be ‘mapped’ to an advection problem with stationary vortices.
When the ratios between vortex strengths are rational, this advection problem takes
place in a period-parallelogram with sides that are a multiple of the original. All
relative motions of the vortices (except ‘separatrix motions’ connecting steady states)
are then periodic. Derivation of the necessary formulae is presented in § 3. Although
always integrable, the advection problem becomes very complicated for all but the
simplest rational ratios of vortex strengths. Thus, in § 4 we consider the simplest case
Γ1 : Γ2 : Γ3 = 1 : 1 : (−2). We also study the effects of varying the shape of the
parallelogram in this case. For Γ1 : Γ2 : Γ3 = 2 : 1 : (−3) the dynamical problem is
already quite rich; we discuss this case in detail for a square domain in § 5. The reader
may wish to glance at figure 12 to appreciate why venturing much beyond this case
is, for all practical purposes, out of the question – this figure shows the separatrix
streamlines of the advection problem corresponding to Γ1 : Γ2 : Γ3 = 7 : 3 : (−10).
Higher rationals have not been attempted as the number of regimes of motion
becomes unmanageably large, although the method that we provide gives a recipe for
obtaining the solution in every case. When the ratios of vortex strengths are irrational,
the advection problem does not ‘fit’ into a period-parallelogram, and the relative
motion of the three interacting vortices can be non-periodic. These complications are
discussed in § 6. Finally, in § 7 we make some remarks on the apparent correspondence
of the complexity seen in this integrable problem and the vortex trajectories observed
in large-scale simulations of two-dimensional turbulence.

2. Equations of motion
From a mathematical viewpoint, the conjugate velocity in the field of N point

vortices with zero net circulation in a periodic parallelogram is given by a doubly pe-
riodic (complex-valued) function with N simple poles at zβ , β = 1, . . . , N, with residues
Γβ/2πi, respectively, and with the sum of the residues being zero. Such a function

is an elliptic function. The sum of Weierstrass ζ-functions (1/2πi)
∑N

β=1 Γβ ζ(z − zβ)
is also an elliptic function having N simple poles at zβ , β = 1, . . . , N, with residues
Γβ/2πi, respectively. The Weierstrass ζ-function is defined by (Whittaker & Watson
1927, § 20.4)

ζ(z;ω1, ω2) =
1

z
+
∑
(m,n)

′
[

1

z − Ωmn +
1

Ωmn
+

z

Ω2
mn

]
, (2.1)

with Ωmn = 2mω1 + 2nω2 for integers m, n, and with the prime indicating that the
sum is over all pairs of integers (m, n) 6= (0, 0). By Liouville’s theorem (Whittaker &
Watson 1927, § 20.12), the conjugate velocity field is thus given by an expression of
the form

u− iv =
dz̄

dt
=

1

2πi

N∑
β=1

Γβ ζ(z − zβ;ω1, ω2) + CN. (2.2)

The overbar denotes complex conjugation. The term CN is a constant as regards z,
but it may depend on the geometry of the periodic domain, the vortex strengths, and
the instantaneous vortex configuration.

The following arguments may be used to determine CN . First, the dynamics of the
particle motion governed by (2.2) consists of a superposition of contributions from
each vortex, so that CN may be written as a sum of N terms, each of which depends
on the position of a single vortex. Next, note that the velocity of the particle due to
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the presence of vortex β is proportional to the strength Γβ .From these considerations
CN can be written as

CN =

N∑
β=1

Γβf(zβ). (2.3)

By spatial homogeneity the dynamics of the particle is also independent of the
location of the coordinate origin, so that

N∑
β=1

Γβf(zβ) =

N∑
β=1

Γβf(zβ − c) (2.4)

for every complex number c. If c is taken to be the position of vortex α, with vortex α
being any one of the N vortices, then

CN =

N∑
β=1

Γβ f(zβ) =

N∑
β=1

′
Γβ f(zβ − zα) + Γα f(0)

=

N∑
β=1

′
Γβ
[
f(zβ − zα)− f(0)

]
=

N∑
β=1

′
Γβ g(zβ − zα), (2.5)

with the prime on a sum indicating that the term β = α is excluded. Now consider
the two-vortex problem with vortex strengths Γ1 = −Γ2 = Γ. In this case (2.5) gives

C2 = −Γ g(z1 − z2) = Γ g(z2 − z1), (2.6)

which demonstrates that g is an odd function. The constant in (2.2) for the three-vortex
problem can be written as

C3 = Γ1 g(z1 − z3) + Γ2 g(z2 − z3) = Γ1 g(z1 − z2) + Γ3 g(z3 − z2). (2.7)

Since the sum of the vortex strengths is zero and g is an odd function, this expression
for C3 gives

g(z1 − z2) + g(z2 − z3) + g(z3 − z1) = 0, (2.8a)
or

g(a) + g(b) = g(a+ b) (2.8b)

for arbitrary complex a, b. This equation is of the same form as Cauchy’s functional
equation for a real variable (Aczél 1969), which implies that g is linear in both the real
and imaginary parts of its argument, i.e. g(z) may be written as a linear function of z
and z̄ . It follows from the linearity of g that f may be chosen as a linear function of
both the real and imaginary parts of its argument; in particular, f(0) may be chosen
equal to zero, so that the additive constant in (2.2) can be written as (cf. (2.3))

CN =
1

2πi

N∑
β=1

Γβ
[
A(ω1, ω2) zβ + B(ω1, ω2) z̄β

]
. (2.9)

The constants A and B can now be determined using the invariance of the velocity
field to period shifts in the vortex locations. If each base vortex at zβ in (2.2) is
replaced by its periodic image at zβ + 2mβω1 + 2nβω2, with mβ and nβ arbitrary
integers, this invariance requires that

N∑
β=1

Γβ
[
2mβ(η1 − Aω1 − Bω̄1) + 2nβ(η2 − Aω2 − Bω̄2)

]
= 0, (2.10)
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where η1 = ζ(ω1) and η2 = ζ(ω2). In writing (2.10) we have used the quasi-periodicity
of the ζ-function:

ζ(z + 2mω1 + 2nω2) = ζ(z) + 2mη1 + 2nη2. (2.11)

The factors multiplying mβ and nβ in (2.10) must vanish independently, giving two
equations for A and B. The result of solving these is

A(ω1, ω2) = (η1ω̄2 − η2ω̄1) / (ω1ω̄2 − ω̄1ω2) , (2.12a)

B(ω1, ω2) = (η2ω1 − η1ω2) / (ω1ω̄2 − ω̄1ω2) . (2.12b)

Legendre’s relation η1ω2 − η2ω1 = πi/2 allows us to write these constants as

A(ω1, ω2) =
η1

ω1

− πω̄1

∆ω1

, B(ω1, ω2) =
π

∆
, (2.13a)

where

∆ = 2i(ω1ω̄2 − ω̄1ω2) (2.13b)

is the area of the basic parallelogram.
Combining (2.2), (2.9) and (2.13a) gives the conjugate velocity of a passive particle

at z in the field of N point vortices in a doubly periodic domain with half-periods ω1

and ω2 as

dz̄

dt
=

1

2πi

N∑
β=1

Γβ

{
ζ(z − zβ;ω1, ω2) +

(
η1

ω1

− πω̄1

∆ω1

)
zβ +

π

∆
z̄β

}
. (2.14)

The linear impulse of the vortex system is given by

N∑
β=1

Γβzβ = Q+ iP , (2.15)

so that the conjugate velocity field can be written as

dz̄

dt
=

1

2πi

{
N∑
β=1

Γβζ(z − zβ;ω1, ω2) +

(
η1

ω1

− πω̄1

∆ω1

)
(Q+ iP ) +

π

∆
(Q− iP )

}
. (2.16)

Note that the value of the linear impulse Q+ iP depends on which vortices are chosen
as the base vortices. The resulting velocity field (2.16), however, is independent of the
choice of base vortices, as it should be. Without loss of generality we may rotate our
coordinates so that ω1 lies along the x-axis, giving

dz̄

dt
=

1

2πi

N∑
β=1

Γβζ(z − zβ;ω1, ω2) +
η1

2πiω1

(Q+ iP )− P

∆
. (2.17)

The conjugate velocity of the vortex at zα is now found by evaluating the limit

dz̄α
dt

= lim
z→zα

(
dz̄

dt
− 1

2πi

Γα

z − zα
)
. (2.18)

Taking this limit in (2.17) gives the conjugate velocity of a vortex at zα in the field of
N − 1 point vortices in a doubly periodic domain with half-periods ω1 and ω2, with
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ω1 chosen to lie along the x-axis, as

dz̄α
dt

=
1

2πi

N∑
β=1

′
Γβζ(zα − zβ;ω1, ω2) +

η1

2πiω1

(Q+ iP )− P

∆
. (2.19)

We have verified that for a square domain (2.19) agrees numerically with the results
of Weiss & McWilliams (1991; equation (7)). We shall explore solutions of (2.19) for
N = 3 and for different ratios of the vortex strengths and different shapes of the
fundamental parallelogram.

Equation (2.19) can be written in Hamiltonian form as

Γα dxα/dt = ∂H/∂yα, Γα dyα/dt = −∂H/∂xα, (2.20a,b)

with the Hamiltonian

H = − 1

2π

N∑
α=1

N∑
β=α+1

ΓαΓβ

{
ln |σ(zα − zβ;ω1, ω2)|

−Re

[
η1

2ω1

(
zα − zβ)2

]
− π

∆

(
yα − yβ)2

}
(2.21a)

given in terms of the Weierstrass σ-function (Whittaker & Watson 1927, § 20.42),
which is related to the ζ-function by ζ(z) = d

(
log σ(z)

)
/dz. This Hamiltonian can

also be written in terms of the Jacobian ϑ1-function (Whittaker & Watson 1927,
chapter 21) as

H = − 1

2π

N∑
α=1

N∑
β=α+1

ΓαΓβ

{
ln

∣∣∣∣∣2ω1

ϑ1

(
(zα − zβ)/2ω1

)
ϑ1
′(0)

∣∣∣∣∣− π

∆
(yα − yβ)2

}
. (2.21b)

Equations (2.21) agree, within an additive constant, with the Hamiltonian given
by O’Neil (1989; equation (3.5)), which O’Neil states agrees numerically with the
result of Campbell et al. (1989); this latter result agrees with that of Weiss &
McWilliams (1991).

3. Solution method
Following the solution path from AS we use (2.15) and the vanishing of the sum

of the circulations to write, for N = 3,

Γ2(z1 − z2) + Γ3(z1 − z3) = −(Q+ iP ), (3.1a)

Γ1(z1 − z2)− Γ3(z2 − z3) = Q+ iP , (3.1b)

so that simple linear relations allow all three vortex separations to be expressed in
terms of one, which we take to be†

z1 − z2 = Z. (3.2a)

Thus,

Γ3(z1 − z3) = −(Q+ iP )− Γ2Z, (3.2b)

Γ3(z2 − z3) = −(Q+ iP ) + Γ1Z. (3.2c)

† In AS this difference was denoted ζ; we use a different symbol here to avoid confusion with
the Weierstrass ζ-function.
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Without loss of generality we may assume that the labels of the vortices have been
chosen such that Γ1 > Γ2 > 0, Γ3 < 0, since two of the vortices must always have the
same sign and the case of two negative vortices follows easily from the case of two
positive vortices. As in AS we introduce the parameter γ such that

Γ1/Γ3 = − ( 1
2

+ γ
)
, (3.3a)

Γ2/Γ3 = − ( 1
2
− γ) , (3.3b)

Γ1/Γ2 = (1 + 2γ)/(1− 2γ). (3.3c)

It follows from these relations that we cover the full range of parameters by allowing
γ to vary between 0 and 1

2
.

From the equations of motion for the vortices (2.19), namely

dz̄1

dt
=

1

2πi
[Γ2 ζ(z1 − z2) + Γ3 ζ(z1 − z3)] +

η1

2πiω1

(Q+ iP )− P

∆
, (3.4a)

dz̄2

dt
=

1

2πi
[Γ1 ζ(z2 − z1) + Γ3 ζ(z2 − z3)] +

η1

2πiω1

(Q+ iP )− P

∆
, (3.4b)

dz̄3

dt
=

1

2πi
[Γ1 ζ(z3 − z1) + Γ2 ζ(z3 − z2)] +

η1

2πiω1

(Q+ iP )− P

∆
, (3.4c)

we obtain for Z the equation of motion

dZ̄

dt
= − Γ3

2πi

{
ζ(z1 − z2) + ζ(z2 − z3) + ζ(z3 − z1)

}
= − Γ3

2πi

{
ζ(Z) + ζ

(
X − ( 1

2
+ γ)Z

)− ζ(X + ( 1
2
− γ)Z)}, (3.5)

where

X = −Q+ iP

Γ3

. (3.6)

In (3.4) and (3.5) the Weierstrass ζ-function has half-periods ω1 and ω2. Equation
(3.5) is the counterpart of the equation for the relative position of vortices 1 and
2 derived for the case of three vortices of vanishing total circulation in a periodic
strip (AS, equation (2.5)). Analogously to our treatment of that equation we seek an
interpretation of (3.5) in terms of the advection of a fictitious passive particle at Z
by a system of fixed vortices.

To this end let us consider the position and nature of the singularities of the function
on the right-hand side of (3.5). First, the term −Γ3ζ(Z)/2πi has a lattice of poles at
Ωmn = 2mω1+2nω2, m, n = 0,±1, . . ., with each pole having residue −Γ3/2πi. Next, the
term −Γ3ζ [X−( 1

2
+γ)Z]/2πi has a lattice of poles at (Ωmn+X)/( 1

2
+γ), m, n = 0,±1, . . .,

with each having residue Γ3/[2πi( 1
2

+ γ)] = −Γ3
2/(2πiΓ1). This can be seen by noting

that the identity (Whittaker & Watson 1927, § 20.4)

ζ(z;ω1, ω2) = L ζ(Lz;Lω1, Lω2) (3.7)

allows us to write the second term in (3.5) as

ζ
(
X − ( 1

2
+ γ)Z;ω1, ω2

)
= − 1

1
2

+ γ
ζ

(
Z − X

1
2

+ γ
;
ω1

1
2

+ γ
,
ω2

1
2

+ γ

)
. (3.8)

Finally, by a similar transformation, we see that the term Γ3ζ [X + ( 1
2
− γ)Z]/2πi has
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a lattice of poles at (Ωmn − X)/( 1
2
− γ), m, n = 0,±1, . . ., with each having residue

Γ3/[2πi( 1
2
−γ)] = −Γ3

2/(2πiΓ2). If γ is rational, and equal to p/q in lowest terms, these
three lattices of poles are all periodic with half-periods 2qω1 and 2qω2. There are
6q2 +8p2 poles within a parallelogram with these half-periods: (2q)2 poles with residue
−Γ3/2πi at Ωmn = 2mω1 + 2nω2 for m, n = 0, 1, . . . , 2q− 1; (q+ 2p)2 poles with residue
2qΓ3/2πi(q+2p) at 2q(X+Ωmn)/(q+2p), m, n = 0, 1, . . . , q+2p−1; and (q−2p)2 poles
with residue 2qΓ3/2πi(q − 2p) at −2q(X − Ωmn)/(q − 2p), m, n = 0, 1, . . . , q − 2p − 1.
Note that the sum of the residues of these poles is zero; thus, for rational γ, (3.5) is an
elliptic function with half-periods 2qω1 and 2qω2. Also notice that, depending on the
value of X, not all of the above poles will lie within the fundamental parallelogram.

By Liouville’s theorem, it follows from these considerations that

ζ(Z;ω1, ω2) + ζ

(
X − 2p+ q

2q
Z;ω1, ω2

)
− ζ
(
X +

2p− q
2q

Z;ω1, ω2

)
=

2q−1∑
m,n=0

ζ (Z − Ωmn; 2qω1, 2qω2)

− 2q

q + 2p

q+2p−1∑
m,n=0

ζ

(
Z − 2q(X + Ωmn)

q + 2p
; 2qω1, 2qω2

)

− 2q

q − 2p

q−2p−1∑
m,n=0

ζ

(
Z +

2q(X − Ωmn)
q − 2p

; 2qω1, 2qω2

)
+ constant. (3.9)

The ζ-functions on the left-hand side have half-periods ω1 and ω2, since they originate
from the ‘physical’ period-parallelogram, whereas the ζ-functions on the right-hand
side have half-periods 2qω1 and 2qω2, as introduced by the consideration of singu-
larities and their periodicity.

3.1. A digression on velocities

In order to evaluate the constant in (3.9) we pause to pursue the following problem.
Consider a periodic array of vortices produced by two vortices with circulations +Γ
and −Γ located at z1 and z2, respectively, in a parallelogram with half-periods ω1

and ω2. The velocity of vortex 1 is given by (2.19) as

dz̄1

dt
= − Γ

2πi
ζ(z1 − z2;ω1, ω2) +

1

2πi

η1

ω1

(Q+ iP )− P

∆
. (3.10)

Now, imagine calculating this velocity using an L×L piece of the above vortex array
in a parallelogram with half-periods Lω1 and Lω2, where L is an integer. According
to (2.19) the result is

dz̄1

dt
=

Γ

2πi

L−1∑
m,n=0

′
ζ
(
z1 − (z1 + Ωmn);Lω1, Lω2

)

− Γ

2πi

L−1∑
m,n=0

ζ
(
z1 − (z2 + Ωmn);Lω1, Lω2

)
+

1

2πi

ζ(Lω1;Lω1, Lω2)

Lω1

L2(Q+ iP )− L2P

L2∆
,

(3.11)

with the prime on the first sum again indicating that the singular term (m, n) = (0, 0)
is omitted. The conjugate velocity of vortex 1 must, of course, be the same in the two
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representations. Thus, comparing expressions (3.10) and (3.11), we have the result

ζ(Z;ω1, ω2) =

L−1∑
m,n=0

ζ(Z − Ωmn;Lω1, Lω2) +

L−1∑
m,n=0

′
ζ(Ωmn;Lω1, Lω2), (3.12)

where we have substituted Z for the arbitrary value of z1 − z2.
The second sum in (3.12) is performed by first using the identity (3.7) to write the

summand as (1/L) ζ(Ωmn/L;ω1, ω2). Now we split the sum into three: one for m = 0,
one for n = 0, and one over 1 6 m, n 6 L − 1. In the first of these we perform the
sum by adding pairs of terms ζ(Ω0n/L;ω1, ω2) = ζ(2nω2/L;ω1, ω2) such that their
arguments add to ω2. If L is odd, there are (L−1)/2 such pairs. If L is even, there are
L/2− 1 such pairs and a term η2 ‘left over’. In either case, according to the addition
theorem for the ζ-function (2.11), each pair contributes 2η2 to the sum, and the result
of the sum with m = 0 is (L− 1)η2/L. In exactly the same way it is seen that the sum
with n = 0 is (L− 1)η1/L.

For the sum over the bulk of the points, 1 6 m, n 6 L− 1, we pair off terms such
that the arguments add to ω3 = ω1 +ω2. For even L there are (L− 1)2/2 such pairs,
each contributing 2η3 = 2ζ(ω3;ω1, ω2) to the sum. For odd L there are [(L−1)2−1]/2
pairs, each contributing 2η3 to the sum, and a single term η3 ‘left over’ (corresponding
to m = n = (L− 1)/2). In either case the resulting sum is η3(L− 1)2/L.

Finally, using η3 = η1 + η2, we have the result

L−1∑
m,n=0

′
ζ(Ωmn;Lω1, Lω2) =

L− 1

L
(η1 + η2 + (L− 1)η3) = (L− 1)η3. (3.13)

Substituting this into (3.12) we have

ζ(Z;ω1, ω2) =

L−1∑
m,n=0

ζ(Z − Ωmn;Lω1, Lω2) + (L− 1) ζ(ω3;ω1, ω2), (3.14)

which allows us to write a ζ-function on a period-parallelogram with half-periods ω1

and ω2 as a sum of ζ-functions with half-periods Lω1 and Lω2 for any integer L. In
AS an analogous result was found for the cotangent function, which can be obtained
from (3.14) by taking the limit to a singly periodic domain.

We now return to (3.9) to determine the constant on the right-hand side. From
(3.14), the first sum on the right-hand side of (3.9) can be written as

2q−1∑
m,n=0

ζ(Z − Ωmn; 2qω1, 2qω2) = ζ(Z;ω1, ω2)− (2q − 1) ζ(ω3;ω1, ω2). (3.15a)

The second sum on the right-hand side of (3.9) requires a bit more work. It can be
written as

r

q+2p−1∑
m,n=0

ζ
(
Z − r (X + Ωmn); 2qω1, 2qω2

)
= r

q+2p−1∑
m,n=0

ζ
(
r (Z/r −X − Ωmn); (q + 2p) rω1, (q + 2p) rω2

)
=

q+2p−1∑
m,n=0

ζ
(
Z/r −X − Ωmn; (q + 2p)ω1, (q + 2p)ω2

)
= ζ(Z/r −X;ω1, ω2)− (q + 2p− 1) ζ(ω3;ω1, ω2), (3.15b)
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with r = 2q/(q + 2p). Similarly, the last sum in (3.9) can be written as

2q

q − 2p

q−2p−1∑
m,n=0

ζ

(
Z +

2q(X − Ωmn)
q − 2p

; 2qω1, 2qω2

)

= ζ

(
q − 2p

2q
Z +X;ω1, ω2

)
− (q − 2p− 1) ζ(ω3;ω1, ω2). (3.15c)

Combining (3.15) we find that the constant in (3.9) is η3 = ζ(ω3;ω1, ω2).

3.2. Interpretation as an advection problem

We now wish to compare (3.5) to the equation of motion for a passive particle at
Z in the field of a certain periodic system of fixed vortices in a parallelogram with
half-periods 2qω1 and 2qω2. These vortices are, of course, precisely the singularities
discussed just before (3.9) above. We recall that they come from one of three ‘families’:
(2q)2 vortices of circulation −Γ3 at Ωmn = 2mω1 + 2nω2, m, n = 0, 1, . . . , 2q − 1;
(q + 2p)2 of circulation 2qΓ3/(q + 2p) = −Γ3

2/Γ1 at 2q(X + Ωmn)/(q + 2p), m, n =
0, 1, . . . , q+ 2p− 1; and (q− 2p)2 of circulation 2qΓ3/(q− 2p) = −Γ3

2/Γ2 at −2q(X−
Ωmn)/(q − 2p), m, n = 0, 1, . . . , q − 2p − 1. This system of 6q2 + 8p2 vortices is quite
interesting independently of its relation to the original three-vortex problem. A
calculation of the velocity of any vortex in such a configuration due to the effects of the
remaining vortices reveals that these three families of vortices form a stationary lattice.
As illustrated in figure 12, these configurations quickly become very complicated. In
fact, as we shall see in more detail in § 6, an irrational value of γ corresponds to a
stationary vortex configuration that is aperiodic!

Using the form of the velocity field from (2.16), we can write the equation of motion
for a passively advected particle at Z as

dZ̄

dt
= − Γ3

2πi

{
2q−1∑
m,n=0

ζ(Z − Ωmn; 2qω1, 2qω2)

− 2q

q + 2p

q+2p−1∑
m,n=0

ζ

(
Z − 2q(X + Ωmn)

q + 2p
; 2qω1, 2qω2

)

− 2q

q − 2p

q−2p−1∑
m,n=0

ζ

(
Z +

2q(X − Ωmn)
q − 2p

; 2qω1, 2qω2

)}

− 1

2πi

[
π

(2q)2∆

2qω̄1

2qω1

− ζ(2qω1; 2qω1, 2qω2)

2qω1

]
(Q+ iP ) +

1

2πi

π

(2q)2∆
(Q− iP ),

(3.16)

where ∆ is the area of the basic parallelogram in real space and Q and P are the
components of the impulse for the system of 6q2 + 8p2 vortices:

Q+ iP = −Γ3

[
2q−1∑
m,n=0

Ωmn − 2q

q + 2p

q+2p−1∑
m,n=0

2q(X + Ωmn)

q + 2p

+
2q

q − 2p

q−2p−1∑
m,n=0

2q(X − Ωmn)
q − 2p

]
= −(2q)2Γ3ω3. (3.17)
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The last two terms on the right-hand side of (3.16) now become

− Γ3

2πiω1

[
η1ω3 +

π

∆
(ω1ω̄3 − ω̄1ω3)

]
= − Γ3

2πi

[
η1 +

1

ω1

(
η1ω2 − iπ

2

)]
= −Γ3η3

2πi
,

(3.18)

where the last step uses Legendre’s relation η1ω2 − η2ω1 = iπ/2. Thus, the equation
of motion for a passively advected particle at Z can be written as

dZ̄

dt
= − Γ3

2πi

{
2q−1∑
m,n=0

ζ
(
Z − Ωmn; 2qω1, 2qω2

)
− 2q

q + 2p

q+2p−1∑
m,n=0

ζ

(
Z − 2q(X + Ωmn)

q + 2p
; 2qω1, 2qω2

)

− 2q

q − 2p

q−2p−1∑
m,n=0

ζ

(
Z +

2q(X − Ωmn)
q − 2p

; 2qω1, 2qω2

)
+ η3

}
. (3.19)

According to (3.9) and the evaluation of the constant in that equation accomplished in
§ 3.1, we see that (3.19) reduces to (3.5). In other words, we have shown, for rational γ,
that the evolution of the relative position of vortices 1 and 2 in the original, periodic
three-vortex problem can be identified with the passive advection of a fictitious particle
by a certain system of stationary point vortices in a larger, periodic parallelogram
similar to the original periodic domain. To facilitate differentiating between the
original three-vortex system and this stationary vortex system, we refer to the domain
of the original vortices as ‘real space’ and the domain of the stationary vortices as
‘phase space’.

The problem of advection by stationary point vortices defines a Hamiltonian system.
Taking Z = x+ iy, (3.19) can be written as

dx/dt = ∂H/∂y, dy/dt = −∂H/∂x, (3.20a,b)

with an appropriate choice for the Hamiltonian H . For computational purposes it is
convenient to work with the form of the conjugate velocity field in (3.5), which gives

H=
Γ3

2π

{
ln
∣∣σ(Z)∣∣− 1

1
2

+ γ
ln
∣∣σ(( 1

2
+ γ)Z −X)∣∣− 1

1
2
− γ ln

∣∣σ(( 1
2
− γ)Z +X

)∣∣}. (3.21)

This system is, of course, integrable. The determination of individual vortex motions in
real space requires one additional quadrature, and this problem is thus also integrable,
as already mentioned. We use the following procedure to determine the real-space
vortex trajectories. Level curves of H (3.21) give streamlines in phase space; from
these streamlines and (3.19) it is possible to numerically determine Z(t). The equation
of motion for z1 (3.4a) can be written in terms of Z as

dz̄1

dt
=

1

2πi

[
Γ2 ζ

(
Z
)

+ Γ3 ζ
(
( 1

2
− γ)Z +X

)]
+

η1

2πiω1

(Q+ iP )− P

∆
, (3.22)

so that once Z(t) is known, z1(t) is determined by numerical quadrature. Vortex
positions z2(t) and z3(t) are then given by (3.2).

With the general framework established, at least for rational γ, we turn to a
study of special cases that have been selected to be somewhat representative. A
comprehensive parametric study is not possible here, since we are dealing with at
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least five independent system parameters: the shape of the basic parallelogram as
determined by ω1 and ω2; the ratio of vortex circulations, γ; and the parameter X
in (3.6) containing two components of the system impulse Q and P . As for the case
of the periodic strip studied in AS we shall find it convenient to specify the shape of
the periodic domain and the value of γ, and then to explore variations in X rather
fully, with ‘representative’ values of X singled out for further detailed study of vortex
trajectories.

4. The special case γ = 0 (Γ1 = Γ2)

Choosing γ = 0 gives the simplest possible ratio of vortex strengths, Γ1 : Γ2 : Γ3 =
1 : 1 : (−2). From (3.5) the advection equation to be solved in this case is

dZ̄

dt
= − Γ3

2πi

{
ζ(Z) + ζ

(
X − 1

2
Z
)− ζ (X + 1

2
Z
)}
. (4.1)

In our formulation above this corresponds to p = 0 and q = 1. Thus, from (3.19) the
equation of motion can be written as

dZ̄

dt
= − Γ3

2πi

{
1∑

m,n=0

ζ(Z − Ωmn; 2ω1, 2ω2)

− 2 ζ(Z − 2X; 2ω1, 2ω2)− 2 ζ(Z + 2X; 2ω1, 2ω2) + η3

}
, (4.2)

and the advection problem for Z takes place in a periodic parallelogram with half-
periods 2ω1 and 2ω2, which is twice the size of the real-space parallelogram. In
general there are six stationary vortices generating the advecting flow (along with
their periodic images): four of circulation −Γ3 located at z = 0, 2ω1, 2ω2, and
2ω1 + 2ω2, and two of circulation 2Γ3 at ±2X.

4.1. The simplest case: X = 0 in a square domain

A particularly simple case arises if X = 0 and the real space domain is a square.
Here, as in the remainder of the paper, we use the notation L = 2ω1 to denote
the width of the fundamental parallelogram in real space. According to (3.2) we
have z3 − z1 = −(z3 − z2), and (3.4c) then shows that vortex 3 remains stationary.
In the advection problem the vortex at the origin† has circulation 3Γ3, and there
are three other advecting vortices of circulation −Γ3 at 2ω1, 2ω2, and 2ω1 + 2ω2,
respectively. The pattern of the advected particle paths (or, equivalently, streamlines)
in the steady flow produced by these four fixed vortices is shown in the phase-space
diagram of figure 1. All streamlines shown are separatrices or ‘dividing streamlines’,
i.e. they connect stagnation points of the advection problem. There are four regimes
of motion in figure 1 labelled I, II, III and IV. As in AS, regimes of motion are
designated by Roman numerals and motions along separatrices by lower-case Greek
letters. For this simple case the motion is always bounded, in the sense that |Z |
is bounded. The top four panels of figure 2 display typical trajectories of the base
vortices for each of the four regimes in figure 1 according to the labels indicated. For
all of these motions, vortices 1 and 2 move periodically along the indicated trajectories
and vortex 3 remains stationary. The bottom four panels of figure 2 correspond to

† This vortex at the origin arises by the coalescence of the two vortices of circulation 2Γ3 at
±2X with the vortex of circulation −Γ3, which is always present at the origin.
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Figure 1. Phase space in a square domain for γ = 0, or Γ1 : Γ2 : Γ3 = 1 : 1 : (−2), and X = 0. The
sides of the square are 2L and there are four stationary vortices (solid dots). The four regimes of
motion are labelled I–IV and the eight separatrices α–λ.
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3 3

Figure 2. Real-space trajectories of the three vortices in a square domain with sides of length L for
γ = X = 0 corresponding to the phase-space diagram of figure 1. Vortex 3 is stationary in all cases.
All motions are shown for one period (in the case of separatrices, for the transition from saddle to
saddle). The motions in β, ε, θ, and λ are obtained by interchanging vortices 1 and 2 in α, δ, η, and
κ respectively.

motions along the eight separatrices in figure 1. The motions along the separatrices α,
β, δ, and ε consist of vortices 1 and 2 switching places in infinite time. Motion along
separatrix β, for example, looks exactly like motion along separatrix α except that the
numbering of vortices 1 and 2 is interchanged, which is indicated by the parenthetical
numbering in figure 2. Motions along the separatrices η, θ, κ, and λ consist of vortices
1 and 2 moving to the positions marked 1′, 2′ in infinite time. The conventions used
in figure 2 (and later in other trajectory plots) are that the original base vortices are
indicated by solid circles; initial vortex positions are given by the numbers 1, 2, and
3; and final positions by 1′, 2′, and 3′ when vortex 3 moves.

4.2. Bifurcations for X 6= 0 and a square domain

The simple picture that emerges for X = 0 is immediately complicated when X 6= 0.
Figure 3, for example, shows the advecting vortex system and its streamlines for
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Figure 3. Phase space in a square domain for Γ1 : Γ2 : Γ3 = 1 : 1 : (−2), or γ = 0, and a
non-degenerate value of X = L(0.3 + i0.2)/2 (point (i) on the bifurcation diagram of figure 5). The
sides of the square are 2L and there are now six stationary vortices (solid dots). There are nine
regimes labelled I–IX and twelve separatrices labelled α–τ.

X = L(0.3 + i0.2)/2. Now all six advecting vortices are present, giving nine regimes
of motion. Three of these regimes yield qualitatively new motions of the advected
particle. In regime VII the particle at Z orbits several of the stationary vortices
instead of just one. In regimes VIII and IX the motion of the particle at Z is
unbounded, in the sense that |Z | is unbounded, when viewing the square domain in
figure 3 as one tile in the complex plane. Thus the distance between vortices 1 and
2 is unbounded, and, according to (3.2), when vortices 1 and 2 separate, all three
vortices will separate; i.e. although they all start in the same period-parallelogram,
any two of the vortices will over time migrate farther and farther apart so that these
base vortices are eventually separated by many periods. There are, of course, periodic
images in each parallelogram, but the effect remains that considerable interchange
occurs among parallelograms in this case.

The top seven panels of figure 4 show sample vortex trajectories in real space
for each of the nine regimes of figure 3. The conventions used in figure 4 are that
the original base vortices are indicated by solid circles; image vortices are indicated
by open circles; initial vortex positions are given by the numbers 1, 2, and 3; final
positions by 1′, 2′, and 3′; and regimes with the same motion but with the labelling
of vortices 1 and 2 interchanged are indicated by parenthetical numbering. In the
initial and final configurations we also join the vortices by a triangle to more clearly
illustrate how the vortex configuration re-emerges after one period of the relative
motion (or how a steady state at one end of a separatrix arises from the steady state
at the other end). In some cases, such as in regimes VIII and IX, showing the motion
of periodic images is essential for understanding how this re-emergence comes about.
In these cases the trajectories of the required periodic images are shown by light
lines with the initial and final vortex positions indicated by open circles and the final
positions numbered 1′′, 2′′, or 3′′.

Notice that the trajectories from regimes I, II, III, and IV in figure 4 are similar
to those of figure 2 in that vortices 1 and 2 orbit as a pair, although here there is a
net translation of the vortex configuration. We term vortex motions in these regimes
paired motions since they consist of two like-sign vortices orbiting in close proximity.
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Figure 4. Real-space trajectories of the three vortices with γ = 0 and X = L(0.3 + i0.2)/2
corresponding to the nine regimes and twelve separatrices of the phase-space diagram in figure 3.

Trajectories from regimes V and VI are also similar, but now the pairing is between
either vortices 1 and 3 or vortices 2 and 3. Since the pairs now contain vortices
of opposite sign we term vortex motions in these regimes coupled motions. Regime
VII, in which the particle at Z orbits several of the stationary vortices, yields vortex
motion in real space with vortices 1, 2, and 3 all interacting. This type of motion we
term collective motion. Finally, motions from regimes VIII and IX, which behave as
described above with |Z | unbounded, we term wandering motions.

Vortex trajectories corresponding to motions along the separatrices of figure 3 are
shown in the bottom six panels of figure 4. It can be seen here that the separatrix
motions contain much of the information needed to construct the motions in the
adjacent regimes. For example, the motion in panel II of figure 4 is a ‘combination’
of the separatrix motions α and β, as would be expected from figure 3. Similarly, the
motion in regime VIII resembles the motion corresponding to the separatrix κ. It is
important to remember, however, that the motions within regimes are truly periodic,
whereas the separatrix motions are not periodic but begin and end at a steady state
(which must be unstable). The extent in real space of a separatrix motion as displayed
in our figures is somewhat arbitrary, since it can be continued ‘forever’ both before
and after the segment shown.

Different values of X give different streamline configurations in phase space. In
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general a streamline pattern for γ = 0 will look similar to that of figure 3 in that
stagnation points of the flow will be joined together pairwise by the separating
streamlines. However, as illustrated in figure 1 with X = 0, there are certain values
of the impulse for which the streamline pattern is degenerate, with several of the
stagnation points being joined together by separatrices. A complete discussion of the
variability of the streamline patterns with X leads us to a bifurcation analysis.

Before pursuing such a bifurcation analysis, it is necessary to determine the range
of X that we need to investigate. We have stressed the notion of ‘base vortices’ from
which the entire vortex lattice can be constructed by periodic continuation. However,
the dynamic problem is invariant to a shift of the ‘base’ vortex by an integral number
of periods, i.e. simultaneous shifts of z1, z2, and z3 by integral multiples of 2ω1 or
2ω2 in the original setup lead to the same problem. This means that changing X by
2ω1[(

1
2

+ γ)m1 + ( 1
2
− γ)m2 − m3] + 2ω2[(

1
2

+ γ)n1 + ( 1
2
− γ)n2 − n3], where mj and nj ,

j = 1, 2, 3, are integers, leads to the same problem. The smallest possible non-zero
multiples of the periods that this expression can assume are 2( 1

2
−γ)ω1 and 2( 1

2
−γ)ω2.

Hence, it is only necessary to consider values of X in a parallelogram with half-periods
( 1

2
− γ)ω1 and ( 1

2
− γ)ω2. We emphasize that the values of X are not periodic, but

changing the value of X by integer multiples of 2( 1
2
− γ)ω1 and 2( 1

2
− γ)ω2 leads to

the same dynamical problem.
The results of the bifurcation analysis for γ = 0 and a square domain are shown in

figure 5. In the bottom right corner we show the bifurcation diagram in the X-plane,
with the values of X restricted to a square with sides of length L/2. Panels (a–h) show
representative streamline patterns in phase space, periodic in a square with sides 2L.
Values of X for which the streamline patterns are degenerate are indicated by the
solid curves in the bifurcation diagram. For example, point (a) corresponds to X = 0
and leads to the streamline pattern shown both in figure 1 and panel (a) of figure 5.
For this value of X each stagnation point is joined to every other stagnation point (or
a periodic image). If we increase the value of X along the diagonal bifurcation line
to point (d), we arrive at the streamline pattern in panel (d). Since point (d) lies on
the same bifurcation line as point (a), we see a similar degeneracy in the streamline
pattern, although all six stationary vortices are present in panel (d). Increasing the
value of X further along the bifurcation line to point (h), with X = L(1 + i)/4,
we reach an interesting degeneracy. At this value of X all of the bifurcation lines
intersect, so that in the streamline plot all of the stagnation points are connected to
each other by separatrices. In fact, as shown in panel (h) of figure 5, there are now
only two stagnation points, each joined to the other (or a periodic image) by eight
separatrices. Note that any value of X along the diagonal bifurcation line corresponds
to a streamline pattern in which the motion of the particle at Z is bounded in every
regime. Changing the value of X to that at point (i) leads to the non-degenerate
streamline pattern shown in figure 3. The other non-degenerate examples shown are
those with X values corresponding to points (b) and (c). Comparing figure 3 and
panel (b) of figure 5 shows that X-values from the same regime in the bifurcation
diagram correspond to qualitatively similar streamline patterns.

A closer examination of the streamline patterns resulting from different X values
shows that the eight regimes in the bifurcation diagram of figure 5 do not represent
eight unique sets of streamline patterns. For example, the pattern in panel (b) of
figure 5, with X = L/8, is a 90◦ rotation of the pattern in panel (c) with X = iL/8.
Similarly, the pattern in panel (e) is a 90◦ rotation of the pattern in panel (g). Thus,
for this case of γ = 0 in a square domain, it is necessary to examine only values of
X from one of the triangles formed by the bifurcation lines; the streamline pattern
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Figure 5. Bifurcation diagram in X-space (lower right) and representative streamline patterns in
the field of the stationary phase-space vortices (panels (a–h)) for Γ1 : Γ2 : Γ3 = 1 : 1 : (−2), or
γ = 0, and a square domain. The phase-space diagram corresponding to point (i) in the bifurcation
diagram is shown in figure 3.

corresponding to any other value of X can be obtained by rotating, reflecting, or
shifting the origin of a streamline pattern corresponding to a value of X from this
triangle. Furthermore, as we noted above, only one value of X needs to be examined
from the interior of the triangle as any other value of X in the interior provides a
qualitatively similar streamline pattern. As a result, figure 5 provides a fairly complete
description of the entire phase space for this choice of parameters.

4.3. Domains that are not square

The results of §§ 4.1 and 4.2 are complicated further when we consider domains that
are not square. Varying the parallelogram shape consists of changing the aspect ratio
a = |ω2|/|ω1| and/or the angle ϕ between the half-periods ω1 and ω2. Here we only
present results of varying one or the other of these two parameters.

Figure 6 shows the results of a bifurcation analysis for a domain with aspect ratio
a = 1 and angle ϕ = 67.5◦. The bottom right panel is the bifurcation diagram in
the X-plane, with the values of X for which examples are shown indicated by the
lettered points. The remainder of the panels show the advecting vortex systems and
their separatrices for each of these example values of X. Note that the diagonals of
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Figure 6. Bifurcation diagram in X-space (lower right) and representative streamline patterns in
the field of the stationary phase-space vortices (panels (a–k)) for γ = 0 and a domain with aspect
ratio a = |ω2|/|ω1| = 1 and angle ϕ = 67.5◦ between the half-periods ω1 and ω2.

the parallelogram are axes of symmetry for the bifurcation diagram, and thus, based
on our argument at the end of § 4.2, it is necessary to examine only one-fourth of the
possible X values. From figure 6 we see that merely changing the shape of the domain
has increased the number of regimes in the bifurcation diagram to ten, with the two
centre regimes yielding qualitatively new streamline patterns. For example, panels (j)
and (k) each have two regimes of motion in which the trajectory of a particle at Z
increases without bound in a direction that is not parallel to either period of the
parallelogram. The streamline patterns in figure 5 show that this type of motion
cannot occur in a square domain. Panel (j), for which X = L(0.6 + i0.48)/2, has been
reproduced in the top left panel of figure 7 with corresponding real-space motions of
the vortices shown in panels labelled I–IX. The unbounded regimes of interest, which
correspond to wandering motions in real space, are labelled VIII and IX. Regimes
I–IV correspond to paired motions, regimes V and VI to coupled motions, and regime
VII to collective motion. It is interesting to compare the vortex trajectories in figure 7
with those in figure 4.
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Figure 7. Streamline pattern (top left) corresponding to the X-value at point (j) in the bifurcation
diagram of figure 6 and representative vortex trajectories (panels I–IX) from each of the nine
regimes.

Figure 8 shows the results of a bifurcation analysis for a rectangular domain with
aspect ratio a = 1.25. The bottom right panel is the bifurcation diagram in the
X-plane, with the values of X at which examples are shown indicated by the lettered
points. The remainder of the panels show the advecting vortex systems and their
separatrices for each of these example values of X. The most interesting qualitative
difference between this and our previous results is the possibility of having wandering
motions with X = 0, which is not possible for a = 1 regardless of the angle ϕ.

We have explored more fully how changing the domain shape affects the results of
the bifurcation analysis, including different choices of aspect ratio a and angle ϕ. We
have observed qualitative changes in the bifurcation diagram at, for example, aspect
ratios above a =

√
2 for a rectangular domain. However, we feel the results presented

here provide an adequate description of the type of behaviour possible in this system.
It is interesting to note that simply changing the domain shape introduces new quali-
tative behaviour in the system. This may have implications for numerical simulations
of two-dimensional turbulence, which are typically conducted only in square periodic
domains.
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Figure 8. Bifurcation diagram in X-space (lower right) and representative streamline patterns in
the field of the stationary phase-space vortices (panels (a–h)) for γ = 0 and a rectangular domain
with aspect ratio a = 1.25.

5. Results for non-zero rational γ
In this Section we restrict our investigation to non-zero rational values of γ, with

γ = p/q in lowest terms. From the analysis of § 3, the equation of motion for the
advected particle at Z can be written as in (3.19). This general analysis shows that
the advection problem can be represented in a parallelogram with half-periods 2qω1

and 2qω2. However, for certain cases the advection problem is periodic in a smaller
parallelogram.

Without loss of generality consider a shift of the base vortices in which base
vortex 1 is shifted by 2aω1 + 2bω2, base vortex 2 by 2cω1 + 2dω2, and base vortex 3 is
not shifted at all. This changes Z by 2(a− c)ω1 + 2(b− d)ω2. In order to ensure that
we are considering an equivalent problem, we require that X is not changed, i.e. a and
c must satisfy (γ + 1

2
)a = (γ − 1

2
)c, and b and d must satisfy (γ + 1

2
)b = (γ − 1

2
)d. With

γ = p/q this means, for example, that 2p(c− a) = q(c+ a). We are only interested in
q > 2. Consider first the case where q is odd. Since p and q are relatively prime, this
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relation tells us that c + a must be a multiple of p and c − a must be a multiple of
q, i.e. there must exist an integer h such that c − a = hq and c + a = 2hp. Solving
for a and c we have 2a = h(2p − q) and 2c = h(2p + q). Since q is odd, it follows
from these equations that h must be even. Similarly, we must have 2b = k(2p − q)
and 2d = k(2p + q) with k even. The smallest shift in Z that leads to an equivalent
problem thus occurs for h = k = 2, from which we conclude that the phase space
will be periodic with half-periods 2qω1 and 2qω2 and we should not expect smaller
periods. We have already seen that there are 6q2 + 8p2 stationary vortices in the basic
phase-space parallelogram for this case.

For even q the situation is different. We set q = 2u and note that p must now be
odd. The equation 2p(c − a) = q(c + a), for example, becomes p(c − a) = u(c + a),
where u and p are relatively prime. There then exists an h such that c − a = hu and
c + a = hp, from which 2a = h(p − q) and 2c = h(p + q). Now, if u is odd, p + u is
even, and h = 1 gives the smallest value of c− a, namely q/2. On the other hand, if u
is even, h must also be even, and the smallest value of c− a occurs for h = 2 and is q.
The results are similar for the integers b and d. Thus, if q is divisible by 4 the phase
space is periodic with half-periods qω1 and qω2 and there are (6q2 +8p2)/4 stationary
vortices in the basic phase-space parallelogram. If q is even but not divisible by
4, the phase space is periodic with half-periods (q/2)ω1 and (q/2)ω2 and there are
(6q2 + 8p2)/16 stationary vortices in the basic phase-space parallelogram.

5.1. The case γ = 1
6

Among the simplest rational values of γ to consider are p/q = 1
3

and 1
4

corresponding
to the vortex strength ratios Γ1 : Γ2 : Γ3 = 5 : 1 : (−6) and 3 : 1 : (−4), respectively.
In the first case q is odd and the advection of a particle at Z occurs in the field
of 62 stationary vortices in a parallelogram with half-periods 6ω1 and 6ω2. For
q = 4 the advection is by 26 stationary vortices in a parallelogram with half-periods
4ω1 and 4ω2. However, for γ = 1

6
, which corresponds to the vortex strength ratios

Γ1 : Γ2 : Γ3 = 2 : 1 : (−3), q is even but not divisible by 4, so that the advection is by
14 vortices in a parallelogram with half-periods 3ω1 and 3ω2. Thus 1

6
is the simplest

non-zero rational value for γ because it yields the smallest periodic domain in phase
space with the smallest number of stationary vortices.

Figure 9 shows the results of a bifurcation analysis for γ = 1
6

in a square domain.
The bottom right panel is the bifurcation diagram in the X-plane and the other three
panels are the advecting vortex systems and their separatrices for the example values
of X indicated by the labels (a–c). The streamline pattern corresponding to the value
of X at point (d) is shown in figure 10. The bifurcation diagram in X for this case
is already much more complex than the corresponding diagram for γ = 0 in figure 5.
This is because in general there are the same number of zeros (stagnation points) in the
Z-plane as there are poles (stationary vortices), and the bifurcation diagram indicates
the values of X for which the stagnation points are connected by separatrices.† The
bifurcation diagram for this case analyses how the 14 stagnation points ‘join up’,
while the analysis for γ = 0 involves only four stagnation points. In fact, the analysis
for γ = 0 is simplified further by the symmetry imposed by taking Γ1 = Γ2.

† The theory of elliptic functions states that the sum of the order of the zeros must equal the sum
of the order of the poles in the parallelogram (Whittaker & Watson 1927, § 20.14). For example,
in panel (h) of figure 5, there are six vortices but only two stagnation points. The vortices are
first-order poles, and in this case the stagnation points are third-order zeros (each of them is formed
by the coalescence of three first-order zeros) so that the sum of the order of either poles or zeros,
with multiplicities taken into account, is six.
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Figure 9. Bifurcation diagram in X-space (lower right) and representative streamline patterns in
the field of the stationary phase-space vortices (panels (a–c)) for Γ1 : Γ2 : Γ3 = 2 : 1 : (−3), or
γ = 1

6
, and a square domain. Streamline pattern corresponding to (d) is in figure 10.

Of the four X values indicated in the bifurcation diagram of figure 9, those labelled
(a) and (c) are on bifurcation curves and thus exhibit a degeneracy or symmetry with
two or more stagnation points in the phase-space streamline pattern connected by
separatrices. In contrast, the streamline patterns shown in panel (b) of figure 9 and
in figure 10 are non-degenerate. We consider in some detail the pattern shown in
figure 10 with X = L(0.375 + i0.2775)/3. There are 27 regimes of motion, but we
only consider the motion in seven of the regimes. Just by observing the structure of
the streamline pattern we can conclude that regime I corresponds to paired motion,
regimes IV and VI to coupled motions, regimes II, V, and VII to collective motions,
and regime III to wandering motion.

As pointed out in AS, it is important to note that the approximate dipole structures
seen in figure 10, such as the one containing regimes I and IV, are essential features
of the streamline pattern and are the main new feature arising for γ 6= 0. For
non-degenerate streamline patterns the stagnation points display this ‘disconnected’
topology, i.e. the saddle points in the phase-space diagram are homoclinic rather than
heteroclinic. This gives rise to regimes of motion that reside in very thin strips of
phase space, such as regime II in figure 10, yet are clearly identifiable in the real-space
dynamics of the vortices. In fact, some of the regimes in figure 10 are so thin that
they are unresolved at the resolution shown! Yet despite the thinness of some of
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Figure 10. Phase space in a square domain for γ = 1
6

and a non-degenerate value of
X = L(0.375 + i0.2775)/3 (point (d) on the bifurcation diagram of figure 9). The sides of the
domain have length 3L and there are 14 stationary vortices (solid dots). The regimes we investigate
are labelled I–VII.

these collective- and wandering-motion regimes, there are sufficiently many of them
to account for a significant area of the phase space.

In figure 11 we show representative real-space trajectories corresponding to the
seven labelled regimes of figure 10. The paired motion in panel I and the coupled
motions in panels IV and VI are not much different from what we have already
observed in the case γ = 0. However, the collective motions in panels II, V, and
VII and the wandering motion in panel III are extremely complex with the vortices
moving through a sequence of complicated turns, some of which are quite sharp. We
stress that the relative vortex motion for all cases shown in figure 11 is periodic, and
that each of these trajectories has an infinite number of periodic images tiling the
complex plane. The re-emergence of the vortex configuration in a wandering motion
such as panel III requires consideration of periodic images.

As pointed out in AS for the periodic strip, an interesting corollary of all these
developments is that there are no stable steady configurations of the three vortices
in real space. Steady configurations correspond to stagnation points of the advecting
flow in phase space away from the vortices, and since these are all saddle points, the
corresponding configurations must be unstable. It is clear that these unstable states
and the separatrix motions connecting them provide a ‘skeleton’ from which the full
dynamics can be understood.

5.2. The case γ = 1
5

As an example of how complicated this integrable problem becomes, consider the
case γ = 1

5
in a square with X = L(0.3 + i0.2)/5. The corresponding advecting vortex

system and its separatrices are shown in figure 12. Here q = 5 is odd, so that the
advection problem takes place in a square of side 10L and there are 8p2 + 6q2 = 158
stationary vortices. It is difficult to tell if this choice of X corresponds to a degenerate
or non-degenerate case, as some of the regimes in phase space are so thin that the
resolution of our numerical scheme for drawing separatrices fails to identify them.
In either case we have an extremely complex phase-space streamline pattern with
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Figure 11. Real-space trajectories of the three vortices with γ = 1
6

and X = L(0.375 + i0.2775)/3
corresponding to the regimes labelled I–VII in figure 10.

over 275 different regimes of motion! We investigate the motions in only the seven
regimes labelled I–VII, and show the corresponding real-space trajectories in figure 13.
Panel II displays coupled motion (vortices 1 and 3 orbit one another) and is similar
to other coupled motions we have observed. Panels III and IV are examples of
collective motion corresponding to the particle at Z in phase space orbiting only a
few of the stationary vortices. Panels I, V, and VI also display collective motions, but
the corresponding particles at Z in phase space now orbit several of the stationary
vortices. In fact, regime VI in figure 12 contains the longest possible path in this phase
space. If we were to trace out the path of an advected particle at Z in regime VI of
figure 12, it would look very similar to the path traced out by vortex 2 in panel VI of
figure 13. Panel VII shows a sample trajectory for wandering motion. We stress that
the motion in panels VI and VII takes place over an area that is many times the area
of the basic periodic L× L square (shown by the dashed line in figure 13).

6. The case of irrational γ
In general γ will, of course, be irrational. As was the case for the periodic strip

discussed in AS, the procedure given in § 3 for rational γ does not immediately
generalize and does not converge in a simple way if one considers a sequence of
rational approximants, pi/qi, approaching the irrational γ ever more closely. For each
of these approximants the procedure of § 3 may be applied. The problem is that the
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Figure 12. Phase-space in a square domain for Γ1 : Γ2 : Γ3 = 7 : 3 : (−10), or γ = 1
5
, and

X = L/5 (0.3 + i0.2). The sides of the domain have length 10L and there are now 158 stationary
vortices (solid dots). The regimes we investigate are labelled I–VII.

denominators qi may fluctuate considerably so that one is led to consider successive
parallelograms and vortex patterns that vary greatly in size.

Instead, for irrational γ return to the equation of motion for Z given in (3.5). By
the definition of the Weierstrass ζ-function (2.1) this equation can be written as

dZ̄

dt
= − Γ3

2πi

{
1

Z
+
∑
(m,n)

′
[

1

Z − Ωmn +
1

Ωmn
+

Z

Ωmn
2

]

− 1(
1
2

+ γ
)
Z −X −

∑
(m,n)

′
[

1(
1
2

+ γ
)
Z −X − Ωmn +

1

Ωmn
+

(
1
2

+ γ
)
Z −X

Ωmn
2

]

− 1(
1
2
− γ)Z −X −∑

(m,n)

′
[

1(
1
2
− γ)Z +X − Ωmn +

1

Ωmn
+

(
1
2
− γ)Z +X

Ωmn
2

]}
,

(6.1a)

where the summations are over all pairs of integers (m, n) 6= (0, 0). Combining the
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summation terms gives

dZ̄

dt
= − Γ3

2πi

{
1

Z
− 1(

1
2

+ γ
)
Z −X −

1(
1
2
− γ)Z −X

−∑
(m,n)

′
[

1

Z − Ωmn −
1(

1
2

+ γ
)
Z −X − Ωmn −

1(
1
2
− γ)Z +X − Ωmn −

1

Ωmn

]}
.

(6.1b)
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The goal is to interpret (6.1b) as the equation of motion for a passive particle in
the field of three infinite families of vortices on the unbounded plane, which requires
that each of the terms in the summand of (6.1b) be treated separately. Since sums
over each of the individual terms in the summand are conditionally convergent some
ordering of the summation must be imposed. We denote such an ordered sum by∑

m,n. Equation (6.1b) can thus be written as

dZ̄

dt
= − Γ3

2πi

∑
m,n

{
1

Z − Ωmn −
1

1
2

+ γ

(
1

Z − (Ωmn +X)/( 1
2

+ γ)

)

− 1
1
2
− γ

(
1

Z − (Ωmn −X)/( 1
2
− γ)

)}
(6.2)

in a frame translating with conjugate velocity −Γ3/2πi
∑′

m,n 1/Ωmn. The value of
this translation velocity depends on the ordering of the sum. Physically, we expect
the infinite problem governed by (6.1b) to be consistent with the previous results for
rational γ, i.e. we expect this infinite system of vortices to be stationary, which requires
that the sums be ordered so that the translation velocity is zero. This result shows that
for any γ, including irrational values, there is a mapping of the real-space problem
onto an advection problem for a passive particle in the field of a system of stationary
vortices that belong to one of three infinite families. Whereas for rational γ these three
families form a pattern that is periodic in a domain which is a multiple of the original
domain, for irrational γ no such parallelogram exists. The incommensurability of the
lattice spacings means that an infinite system is required.

As illustrated in the streamline patterns of figures 10 and 12, the saddle points in
phase space in general do not ‘join up’. Thus for the case of irrational γ it appears
that, except for a special set of X-values, no two stagnation points in the advection
problem will be joined by a separatrix, leading to an infinity of regimes of motion.
There will still exist the four types of regimes corresponding to paired, coupled,
collective and wandering motions. However, the regimes corresponding to wandering
motions will necessarily extend to infinity, leading to real-space motions that are not
periodic, even with the consideration of periodic images.

7. Concluding remarks
Regardless of the value of the vortex strengths, the problem of three point vortices

in a doubly periodic domain can be mapped to the problem of advection of a passive
particle by a system of stationary vortices. If the ratio of the vortex strengths is
rational then the relative motion of the vortices in real space is periodic in time; if
this ratio is irrational then the relative vortex motion can be aperiodic. In both cases
there exist regimes of motion in which the vortex trajectories are more complicated
than expected from an integrable system.

McWilliams (1990; see, in particular, his figure 2) has attempted to trace individ-
ual, concentrated vortices in large-scale numerical simulations of two-dimensional
turbulence. He finds vortex trajectories that share qualitative features with those of
the three-vortex problem. An individual vortex in the simulations negotiates sharp
turns and long, relatively uneventful flights of several periodic box lengths. Finite-area
vortices also may merge with other vortices in the field, and may undergo substan-
tial straining, so complete correspondence with point vortex trajectories is not to be
expected. Nevertheless, our solutions of the three-vortex problem provide support for



128 M. A. Stremler and H. Aref

the conclusion that the complexity of individual vortex trajectories observed in two-
dimensional turbulence is not necessarily associated with the turbulent field. Vortex
trajectories of comparable complexity are readily found in the integrable three-vortex
problem in a periodic square. This observation, along with a study of the advection
properties of three-vortex motion in a periodic square, have suggested to us that the
problem of three vortices in a periodic parallelogram, suitably averaged over vortex
circulations, and over initial conditions, may provide a useful and tractable model of
two-dimensional turbulence. We are currently pursuing this idea.

A preliminary report on this work was presented at the forty-ninth annual meeting
of the APS Division of Fluid Dynamics in Syracuse, NY (Stremler & Aref 1996).
We thank P. L. Boyland, V. V. Meleshko, and D. L. Vainchtein for comments
and discussion. This work was supported by NSF grant CTS-9311545. M.A.S. also
acknowledges the support of an ONR Fellowship.
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